3.945 \(\int \frac{(a+b x)^n}{(c+d x)^2} \, dx\)

Optimal. Leaf size=52 \[ \frac{b (a+b x)^{n+1} \, _2F_1\left (2,n+1;n+2;-\frac{d (a+b x)}{b c-a d}\right )}{(n+1) (b c-a d)^2} \]

[Out]

(b*(a + b*x)^(1 + n)*Hypergeometric2F1[2, 1 + n, 2 + n, -((d*(a + b*x))/(b*c - a*d))])/((b*c - a*d)^2*(1 + n))

________________________________________________________________________________________

Rubi [A]  time = 0.0094082, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.067, Rules used = {68} \[ \frac{b (a+b x)^{n+1} \, _2F_1\left (2,n+1;n+2;-\frac{d (a+b x)}{b c-a d}\right )}{(n+1) (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^n/(c + d*x)^2,x]

[Out]

(b*(a + b*x)^(1 + n)*Hypergeometric2F1[2, 1 + n, 2 + n, -((d*(a + b*x))/(b*c - a*d))])/((b*c - a*d)^2*(1 + n))

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rubi steps

\begin{align*} \int \frac{(a+b x)^n}{(c+d x)^2} \, dx &=\frac{b (a+b x)^{1+n} \, _2F_1\left (2,1+n;2+n;-\frac{d (a+b x)}{b c-a d}\right )}{(b c-a d)^2 (1+n)}\\ \end{align*}

Mathematica [A]  time = 0.0130413, size = 52, normalized size = 1. \[ \frac{b (a+b x)^{n+1} \, _2F_1\left (2,n+1;n+2;-\frac{d (a+b x)}{b c-a d}\right )}{(n+1) (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^n/(c + d*x)^2,x]

[Out]

(b*(a + b*x)^(1 + n)*Hypergeometric2F1[2, 1 + n, 2 + n, -((d*(a + b*x))/(b*c - a*d))])/((b*c - a*d)^2*(1 + n))

________________________________________________________________________________________

Maple [F]  time = 0.049, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( bx+a \right ) ^{n}}{ \left ( dx+c \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^n/(d*x+c)^2,x)

[Out]

int((b*x+a)^n/(d*x+c)^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x + a\right )}^{n}}{{\left (d x + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^n/(d*x+c)^2,x, algorithm="maxima")

[Out]

integrate((b*x + a)^n/(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x + a\right )}^{n}}{d^{2} x^{2} + 2 \, c d x + c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^n/(d*x+c)^2,x, algorithm="fricas")

[Out]

integral((b*x + a)^n/(d^2*x^2 + 2*c*d*x + c^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x\right )^{n}}{\left (c + d x\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**n/(d*x+c)**2,x)

[Out]

Integral((a + b*x)**n/(c + d*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x + a\right )}^{n}}{{\left (d x + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^n/(d*x+c)^2,x, algorithm="giac")

[Out]

integrate((b*x + a)^n/(d*x + c)^2, x)